TN 11th, Maths Chapter 1, Exercise 1.1

Welcome To

Class       : XI
Subject   : Maths
Chapter  : 1
Exercise : 1.1

Que 1 :

Write the following in roster form:

(i)  {x ∈ N : x² < 121 and x is a prime};

Solution :

x is a Prime Number; x² < 121
Let 2² = 4, 3² = 9 , 5² = 25, 7² = 49, (i.e) x²<121
So We Take 2,3,5,7
A = {2, 3, 5, 7}




(ii) The set of all positive roots of the equation
(x – 1)(x + 1)(x2 – 1) = 0;

Solution :

Let
x-1= 0;        x+1 = 0;        x²+1 = 0
x = 1;              x = -1;             x = ±1

Let "B"  as the the set of all positive roots of the equation (x – 1)(x + 1)(x2 – 1) 
B = { 1, -1, ±1} Only Positive Roots
So We Take B = {1}
B = {1}




(iii) {x ∈ N : 4x + 9 < 52};

Solution :

             4x + 9 < 52
Add (-9) On Both Side
       4x + 9 – 9 < 52 – 9
                    4x < 43              
                      x < 43/4                  
              (i.e.) x < 10.75
But x ∈ N
∴ A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}




(iv)  {x : (x−4 ÷ x+2) = 3, x ∈ R – {-2}}.

Solution :

                   x-4/x+2 = 3
Divided By ( x + 2 ) On Both Side
  [(x-4)(x+2)]/(x+2) = 3(x+2) {∴ x≠2}
               (i.e.) x – 4 = 3(x + 2)
                        x – 4 = 3x + 6
                    – 4 – 6 = 3x – x
                             2x = -10
                               x = -5 
                           ∴ A = {-5} 





Que 2 :

Write the set {-1,1} in set builder form.

Solution :

Let A = { -1, 1 }
A { x ∈ ℝ, x Is The Root Of Equation x²-1=0}
A = {x: x²= 1}




Que 3 :

State whether the following sets are finite or infinite.

(i) {x ∈ N : x is an even prime number}

Solution :

A = { 2 } 
A is a Finite Set




(ii) {x ∈ N : x is an odd prime number}

Solution :

A = { 3, 5, 7, 11, 13, ......}
A Is a Infinite Set




(iii) {x ∈ Z : x is even and less than 10}

Solution :

A = { ....., -4, -2, 0, 2, 4, 6, 8 }
A Is a Infinite Set




(iv) {x ∈ R : x is a rational number}

Solution :

A = { All Rational Numbers }
A Is a Infinite Set




(v) {x ∈ N : x is a rational number}

Solution :

A = { 1, 2, 3, 4, 5, ...... }
A Is a infinite Set






Que 4 :

By taking suitable sets A, B, C, verify the following results:

Solution :

To prove the following results let us take
U = {1, 2, 5, 7, 8, 9, 10}
A = {1, 2, 5, 7}
B = {2, 7, 8, 9}
C = {1, 5, 8, 7}

(i) To prove:
A × (B ∩ C) = (A × B) ∩ (A × C)

B ∩ C = {8};
A = {1, 2, 5, 7};
A × (B ∩ C) = {1, 2, 5, 7} × {8}
                    = {(1, 8), (2, 8), (5, 8), (7, 8)}

A x B = {(1, 2), (1, 7), (1, 8), (1, 9), (2, 2), (2, 7), (2, 8), (2, 9), (5, 2), (5, 7), (5, 8), (5, 9), (7, 2), (7, 7), (7, 8), (7, 9)}

A × C = {(1, 1), (1, 5),(1, 8), (1, 10), (2, 1), (2, 5), (2, 8), (2, 10), (5, 1), (5, 5), (5, 8), (5, 10), (7, 1), (7, 5), (7, 8), (7, 10)}

(A × B) ∩ (A × C) = {(1, 8), (2, 8), (5, 8), (7, 8)

Hence Proved
A × (B ∩ C) = (A × B) ∩ (A × C)





(ii) To prove :
A × (B ∪ C) = (A × B) (A × C)

B ∪ C = {1, 2, 5, 7, 8, 9, 10}
A = {1, 2, 5, 7};
A × (B ∪ C) = {(1, 1), (1, 2), (1, 5), (1, 7), (1, 8), (1, 9), (1, 10), (2, 1), (2, 2), (2, 5), (2, 7), (2, 8), (2, 9), (2, 10), (5, 1), (5, 2), (5, 5), (5, 7), (5, 8), (5, 9), (5, 10), (7, 1), (7, 2), (7, 5), (7, 7), (7, 8), (7, 9), (7, 10))

A × B = {(1, 2), (1, 7), (1, 8), (1, 9), (2, 2), (2, 7), (2, 8), (2, 9), (5, 2), (5, 7), (5, 8), (5, 9),
(7, 2), (7, 7), (7, 8), (7, 9)}

A × C = {(1, 1), (1, 5), (1, 8), (1, 10), (2, 1), (2, 5), (2, 8), (2, 10), (5, 1), (5, 5), (5, 8), (5, 10), (7, 1), (7, 5), (7, 8), (7, 10)}

(A × B) ∪ (A × C) = (1, 1), (1, 2), (1, 5), (1, 7), (1, 8), (1,9), (1, 10), (2, 1), (2, 2), (2, 5), (2, 7), (2, 8), (2, 9), (2, 10), (5, 1), (5, 2), (5, 5), (5, 7), (5, 8), (5, 9), (5, 10), (7, 1), (7, 2), (7, 5), (7, 7), (7, 8), (7, 9), (7, 10)}

Hence Proved
A × (B ∪ C) = (A × B) ∪ (A × C)




(iii) To Prove 
(A × B) ∩ (B × A) = (A ∩ B) × (B ∩ A)

A × B = {(1, 2), (1, 7), (1, 8), (1, 9) (2, 2), (2, 7), (2, 8), (2, 9) (5, 2), (5, 7), (5, 8), (5, 9) (7, 2), (7, 7), (7, 8), (7, 9)}

B × A = {(2, 1), (2, 2), (2, 5), (2, 7) (7, 1), (7, 2), (7, 5), (7, 7) (8, 1), (8, 2), (8, 5), (8, 7) (9,1), (9, 2), (9, 5), (9, 7)}

(A × B) ∩ (B × A) = {(2, 2), (2, 7), (7, 2), (7, 7)}

(A ∩ B) = {2, 7}

(B ∩ A) = {2, 7}

(A ∩ B) × (B ∩ A) = {2, 7} × {2, 7}

                               = {(2, 2), (2, 7), (7, 2), (7, 7)}

Hence Proved
(A × B) ∩ (B × A) = (A ∩ B) × (B ∩ A)




(iv) To prove
C – (B – A) = (C ∩ A) ∪ (C ∩ B)

B – A = {8, 9};
C = {1, 5, 8, 10};             
C – (B – A) = {1, 5, 10}

C ∩ A = {1}
C ∩ B = {1, 5, 10}
(C ∩ A) ∪ (C ∩ B) = {1} ∪ {1, 5, 10}
                               = {1, 5, 10}

Hence Proved
C – (B – A) = (C ∩ A) ∪ (C ∩ B)




(v) To prove
(B – A) ∩ C = (B ∩ C) – A = B ∩ (C – A)

B – A = {8, 9}
(B – A) ∩ C = {8}

B ∩ C = {8}
A = {1, 2, 5, 7}
So (B ∩ C) – A = {8}



C – A = {8, 10}
B = {2, 7, 8, 9}
B ∩ (C – A) = {8}

Hence Proved
(B – A) ∩ C = (B ∩ C) – A = B ∩ (C – A)





(vi) To prove
(B – A) ∪ C = (B ∪ C) – (A – C)

B – A = {8, 9},
C = {1, 5, 8, 10}
(B – A) ∪ C = {1, 5, 8, 9, 10} ……. (1)

B ∪ C = {1, 2, 5, 7, 8, 9, 10}
A – C = {2, 7}
(B ∪ C) – (A – C) = {1, 5, 8, 9, 10} ……… (2)

(1) = (2)
⇒ (B – A) ∪ C = (B ∪ C) – (A – C)






Que 5 :

Justify the trueness of the statement.
“An element of a set can never be a subset of itself.”

Solution :

Let A = { a, b, c, d }

Each and every element of the set A can be a subset of a set itself

Example  A = {a}, {b}, {c}, {d}
Hence The Given Statement Is Not True.

A set itself can be a subset of itself
(i.e.) A ⊆ A.
But it cannot be a proper subset.





Que 6 :

If n(P(A)) = 1024, n(A ∪ B) = 15 and n(P(B)) = 32, then find n(A ∩ B).

Solution :

n(P(A)) = 1024
               = 2¹⁰
      n(A) = 10

n(A ∪ B) = 15                      

n(P(B)) = 32
              = 2⁵
      n(B) = 5

We Know That
         n(A ∪ B) = n(A) + n(B) – n(A ∩ B)
                    15 = 10 + 5 – n(A ∩ B)
         n(A ∩ B) = 15 – 15
                         = 0




Que 7 :

If n(A ∩ B) = 3 and n(A ∪ B) = 10, then find n(P(A(A ∆ B))

Solution :

n(A ∪ B) = 10
n(A ∩ B) = 3
n(A ∆ B) = 10 – 3 = 7

and n(P(A ∆ B)) = 27
                             = 128




Que 8 :

For a set A, A × A contains 16 elements and two of its elements are (1, 3) and (0, 2). Find the elements of A.

Solution :

A × A = 16 elements = 4 × 4
⇒ A has 4 elements
∴ A = {0, 1, 2, 3}





Que 9 :

Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, find A and B, where x, y, z are distinct elements.

Solution :

n(A) = 3 ⇒ set A contains 3 elements,
n(B) = 2 ⇒ set B contains 2 elements,
we are given (x, 1), (y, 2), (z, 1) are elements in A × B ⇒ A = {x, y, z} and B = {1, 2}




Que 10 :

If A × A has 16 elements,
S = {(a, b) ∈ A × A : a < b}; (-1, 2) and (0, 1) are two elements of S, then find the remaining elements of S.

Solution :

n(A × A) = 16 ⇒ n( A) = 4

S ={(-1, 0), (-1, 1), (0, 2), (1, 2)}





If Any Doubt Click Here To Contact In WhatsApp 



Thank You For Refering On Our Page



Comments

Popular posts from this blog

TN 11th, Maths Chapter 2, Exercise 2.2

TN 11th, Maths

TN Maths, 11th, All Important Questions