TN Maths 12th, Chapter 2 Important Questions

                     Welcome To



Class : XII
Subject : Maths
Chapter : 2
Chapter : Complex Numbers

IMPORTANT QUESTIONS

      
2 & 3 Marks Questions


1. Simplify:
i) i¹⁷²⁹
ii) i-¹⁹²⁴ +i²⁰¹⁸
      102
iii) Σ      i^n
      n=1
iv) i i² ……i⁴⁰
v) i¹⁹⁴⁷+ i²⁰⁰⁰
      12
vi) Σ i^n
     n=1
       10
vii) Σ i^n+⁵⁰
      n=1
viii) i¹⁹⁴⁸ – i¹⁸⁶⁹
ix) i⁵⁹+(1/ i⁵⁹)
x) i i² i³…… i²⁰⁰⁰

2. Evaluate the following if Z= 5-2i and W= -1+3i
i) z+w
ii) z-iw
iii) 2z+3w
iv) zw
v) z²+2zw+w²
vi)(z+w)²

3. If Z1 = 1 -3i, Z2 = -4i and Z3 =5 , show that
i)  (z1+z2)+z3 = z1+(z2+z3)
ii) (z1z2) z3 = z1(z2z3)

4. Find z-¹, if z = (2+3i) (1-i)

5.Write the following in the rectangular form
i) (5+9i )+ (2-4i)
ii) (10-5i)/(6+2i)
iii) 3i +(1/2-i)

6. Prove the following properties:
                             _
i) z is real if z = z
                          _                                 _
ii) Re(z) = (z + z)/2 and Im(z) = (z – z)/2i

7. Find the modules of the following complex numbers,
i) 2i
ii) (2 – i)/(1+i) + (1 - 2i)/(1-i)
iii) (1 - i)¹⁰
iv) 2i (3 – 4i) (4 – 3i)
v) |(2+i)/(1+2i)|
         _____
vi) |(1 + i) (2 + 3i) (4i – 3)|
vii)|i (2 + i)³/(1 + i)²|

8. Show that the following equations represent a circle, and find its center and radius 
i) |z – 2 – i|= 3
ii) |2z + 2 – 4i| = 2
iii) |3z – 6 + 12i| = 8
iv) |3z – 5 + i| = 4

9. Find the real values of numbers x and y if the complex numbers
i) (2 + i) x + (1 – i) y + 2i – 3 and x + (-1 + 2i )y + 1 + i
ii) (3 – i) x – (2-i) y + 2i +5 and 2x + (-1 + 2i)y + 3 + 2i are equal.

10. If z1=2 + 5i , z2 = -3 - 4i nad z3 = 1 + i , Find the additive and multiplicative Inverse of z1 ,z2 and z3.

11. Simplify: (1+i/1-i)³ - (1–i/1+i)³ into rectangular form.

12. If (z+3/z–5i)= (1+4i/2), find the complex numbers z in the rectangular form.

13. If z1 = 2 – I and z2 = -4 + 3i , find the inverse of z1 z2 and z1/z2

14. Which one of the points i , -2 + i , and 3 is farthest from of the origin?

15.If z = 2 show that 3 ≤ z + 3 + 4i ≤ 7

16. If z = 3 show that 7 ≤ z + 6 – 8i ≤ 13

17. If z = 1 show that 2 ≤ z2 – 3 ≤ 4
 
18. If z = 2 show that 8 ≤ z + 6 + 8i ≤ 12

19. Which one of the points 10 – 8i , 11 + 6i is closest to 1 + i

20. Find the square root of
i) 4 +3i
ii) -6 + 8i
iii) -5 – 12i
iv) 6 – 8i
                                                        __
21. Show that the equation z²= z has four solutions.
                                                       ___
22. Show that the equation z³+2z = 0 has five solutions.

23. Show that the z + 2 – i < 2 represents interior points of a circle. find its centre and radius.


5 Mark Questions


1. Find the least value of the positive integer n for which (√3 + i )^n
i) Real
ii) Purely Imaginary

2. Show that :
i) (2 + i√3)¹⁰+(2 - i√3)¹⁰ is real
ii) (2 + i√3)¹⁰–(2 - i√3)¹⁰ is purely imaginary
iii) (19+9i/5–3i)¹⁵ - (8+i/1+2i)¹⁵ is purely imaginary.
iv) (19–7i/9+i)¹² + (20–5i/7–6i)¹²is real.

3. Show that the points i , (-1/2)+ (i√3/2) and (-1/2)-(i√3/2) are the vertices of an equilateral triangle.

4. If z = x + iy is a complex number such that Im (2z+1/i^z+1)= 0 , show that the locus of z is 2x²+2y²+x–2y =0.

5. If z = x + iy is a complex number such that |(z-4i)/(z+4i)| = 1 show that the locus of z is real axis.

Thank You For Refering On Our Page



Comments

Popular posts from this blog

TN 11th, Maths Chapter 2, Exercise 2.2

TN 11th, Maths

TN Maths, 11th, All Important Questions